Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Heliyon ; 10(7): e28695, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586346

ABSTRACT

In this study, a very sensitive fluorescence nano-biosensor was developed using CeO2 nanoparticles for the rapid detection of DNA methylation. The characteristics of CeO2 nanoparticles were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) spectroscopy, UV-visible spectroscopy, and fluorescence spectroscopy. The CeO2 nanoparticles were reacted with a single-stranded DNA (ssDNA) probe, and then methylated and unmethylated target DNAs hybridized with an ssDNA probe, and the fluorescence emission was measured. Upon adding the target unmethylated and methylated ssDNA, the fluorescence intensity increased in the linear range of concentration from 2 × 10-13 - 10-18 M. The limit of detection (LOD) was 1.597 × 10-6 M for methylated DNA and 1.043 × 10-6 M for unmethylated DNA. The fluorescence emission intensity of methylated sequences was higher than of that unmethylated sequences. The fabricated DNA nanobiosensor showed a fluorescence emission at 420 nm with an excitation wavelength of 280 nm. The impact of CeO2 binding on methylated and unmethylated DNA was further demonstrated by agarose gel electrophoresis. Finally, the actual sample analysis suggested that the nanobiosensor could have practical applications for detecting methylation in the human plasma samples.

2.
Biomed Opt Express ; 15(3): 1571-1584, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495683

ABSTRACT

Mitochondrial morphology provides unique insights into their integrity and function. Among fluorescence microscopy techniques, 3D super-resolution microscopy uniquely enables the analysis of mitochondrial morphological features individually. However, there is a lack of tools to extract morphological parameters from super-resolution images of mitochondria. We report a quantitative method to extract mitochondrial morphological metrics, including volume, aspect ratio, and local protein density, from 3D single-molecule localization microscopy images, with single-mitochondrion sensitivity. We validated our approach using simulated ground-truth SMLM images of mitochondria. We further tested our morphological analysis on mitochondria that have been altered functionally and morphologically in controlled manners. This work sets the stage to quantitatively analyze mitochondrial morphological alterations associated with disease progression on an individual basis.

3.
PLoS One ; 19(2): e0297135, 2024.
Article in English | MEDLINE | ID: mdl-38408093

ABSTRACT

Age-related macular degeneration (AMD) is a vision threatening disease in older adults. Anti-VEGF treatment is effective for the majority of neovascular AMD (nAMD) patients, although approximately 30% of nAMD patients have an incomplete response for unknown reasons. Here we assessed the contribution of single nucleotide polymorphisms (SNPs) in key angioinflammatory regulatory genes in nAMD patients with an incomplete response compared to those responsive to anti-VEGF treatment. A total of 25 responsive and 30 nAMD patients with an incomplete response to anti-vascular endothelial growth factor (anti-VEGF) treatment were examined for known SNPs that impact the structure and function of thromobospondin-1 (TSP1), Bcl-2-interacting mediator of cell death (BIM) and complement factor H (CFH). Plasma levels of C-C motif chemokine ligand 2 (CCL2/MCP1), TSP1 and VEGF were assessed by ELISA. Patients responsive to anti-VEGF treatment showed a significant increase in the TSP1 rs2228262 AA allele and a trend for the BIM (rs724710) CT allele. Consistent with previous reports, 42% of the patients responsive to anti-VEGF expressed the CC allele for CFH rs1061170. Although the CFH TT allele had similarly low prevalence in both groups, the TC allele tended to be more prevalent in patients with an incomplete response. Patients with an incomplete response also had increased plasma CCL2/MCP1 levels, consistent with the role increased inflammation has in the pathogenesis of nAMD. Our studies point to new tools to assess the potential responsiveness of nAMD patients to anti-VEGF treatment and suggest the potential use of anti-CCL2 for treatment of nAMD patients with an incomplete response to anti-VEGF.


Subject(s)
Angiogenesis Inhibitors , Wet Macular Degeneration , Humans , Aged , Complement Factor H/genetics , Vascular Endothelial Growth Factor A/genetics , Visual Acuity , Polymorphism, Single Nucleotide , Thrombospondins/genetics
4.
Semin Cell Dev Biol ; 155(Pt B): 32-44, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37507331

ABSTRACT

Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.


Subject(s)
Neoplasms , Vascular Diseases , Humans , Neoplasms/pathology , Neovascularization, Pathologic/pathology
5.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069208

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.


Subject(s)
Mesenchymal Stem Cells , Polycyclic Aromatic Hydrocarbons , Receptors, Odorant , Animals , Mice , Bone Marrow/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Mesenchymal Stem Cells/metabolism , Oxygen , Polycyclic Aromatic Hydrocarbons/metabolism , Reactive Oxygen Species , Receptors, Aryl Hydrocarbon/metabolism
6.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004422

ABSTRACT

Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.

7.
Exp Eye Res ; 236: 109666, 2023 11.
Article in English | MEDLINE | ID: mdl-37783334

ABSTRACT

Angiogenesis, although required during eye development, has a causative effect in many ocular diseases. Aberrant neovascularization contributes to the progression of neovascular age-related macular degeneration (nAMD), a vision-threaten disease in aging Americans. Since increased amounts of vascular endothelial growth factor (VEGF) drives neovascularization during the pathogenesis of nAMD the standard of care are anti-VEGF therapies attempt to disrupt this vicious cycle. These current anti-VEGF therapies try to maintain vascular homeostasis while abating aberrant neovascularization but regrettably don't prevent fibrosis or scar formation. In addition, some patients demonstrate an incomplete response to anti-VEGF therapy as demonstrated by progressive vision loss. Here, we show choroidal endothelial cells (ChEC) incubated with artesunate demonstrated decreased migration and inflammatory and fibrotic factor expression, which corresponded with decreased sprouting in a choroid/retinal pigment epithelium (RPE) explant sprouting angiogenesis assay. To assess the efficacy of artesunate to curtail neovascularization in vivo, we utilized laser photocoagulation-induced rupture of the Bruch's membrane to induce choroidal neovascularization (CNV). Artesunate significantly inhibited CNV and the accompanying fibrotic scar, perhaps due in part to its ability to inhibit mononuclear phagocyte (MP) recruitment. Thus, artesunate shows promise in inhibiting both CNV and fibrosis.


Subject(s)
Choroidal Neovascularization , Vascular Endothelial Growth Factor A , Humans , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Artesunate/therapeutic use , Cicatrix/prevention & control , Cicatrix/pathology , Endothelial Cells/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/etiology , Vascular Endothelial Growth Factors , Disease Models, Animal , Mice, Inbred C57BL
8.
Nat Commun ; 14(1): 5534, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749092

ABSTRACT

Mesenchymal activation, characterized by dense stromal infiltration of immune and mesenchymal cells, fuels the aggressiveness of colorectal cancers (CRC), driving progression and metastasis. Targetable molecules in the tumor microenvironment (TME) need to be identified to improve the outcome in CRC patients with this aggressive phenotype. This study reports a positive link between high thrombospondin-1 (THBS1) expression and mesenchymal characteristics, immunosuppression, and unfavorable CRC prognosis. Bone marrow-derived monocyte-like cells recruited by CXCL12 are the primary source of THBS1, which contributes to the development of metastasis by inducing cytotoxic T-cell exhaustion and impairing vascularization. Furthermore, in orthotopically generated CRC models in male mice, THBS1 loss in the TME renders tumors partially sensitive to immune checkpoint inhibitors and anti-cancer drugs. Our study establishes THBS1 as a potential biomarker for identifying mesenchymal CRC and as a critical suppressor of antitumor immunity that contributes to the progression of this malignancy with a poor prognosis.


Subject(s)
Colorectal Neoplasms , Monocytes , Humans , Male , Animals , Mice , Immunosuppression Therapy , Aggression , Immune Checkpoint Inhibitors , Tumor Microenvironment
9.
Diabetologia ; 66(11): 2170-2185, 2023 11.
Article in English | MEDLINE | ID: mdl-37670018

ABSTRACT

AIMS/HYPOTHESIS: The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival. METHODS: Loss of pericytes and levels of inflammatory markers at the mRNA and protein levels were investigated in two genetic models of diabetes, Ins2Akita/+ (a model of type 1 diabetes) and Leprdb/db (a model of type 2 diabetes), at early stages of diabetic retinopathy. In addition, changes that accompany gliosis and the retinal vasculature were determined. Finally, changes in retinal pericytes chronically incubated with vehicle or increasing amounts of IFNγ were investigated to determine the effects on pericyte survival. The numbers of pericytes, microglia, astrocytes and endothelial cells in retinal flatmounts were determined by immunofluorescence. Protein and mRNA levels of inflammatory factors were determined using multiplex ELISAs and quantitative reverse transcription PCR (qRT-PCR). The effects of IFNγ on the murine retinal pericyte survival-related platelet-derived growth factor receptor ß (PDGFRß) signalling pathway were investigated by western blot analysis. Finally, the levels of cell death-associated protein kinase C isoform delta (PKCδ) and cleaved caspase 3 (CC3) in pericytes were determined by western blot analysis and immunocytochemistry. RESULTS: The essential findings of this study were that both type 1 and 2 diabetes were accompanied by a similar progression of retinal pericyte loss, as well as gliosis. However, inflammatory factor expression was dissimilar in the two models of diabetes, with peak expression occurring at different ages for each model. Retinal vascular changes were more severe in the type 2 diabetes model. Chronic incubation of murine retinal pericytes with IFNγ decreased PDGFRß signalling and increased the levels of active PKCδ and CC3. CONCLUSIONS/INTERPRETATION: We conclude that retinal inflammation is involved in and sustains pericyte loss as diabetic retinopathy progresses. Moreover, IFNγ plays a critical role in reducing pericyte survival in the retina by reducing activation of the PDGFRß signalling pathway and increasing PKCδ levels and pericyte apoptosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Mice , Animals , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Disease Models, Animal , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 1/metabolism , Endothelial Cells/metabolism , Gliosis/complications , Gliosis/metabolism , Diabetes Mellitus, Experimental/metabolism , Retina/metabolism , Inflammation/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pericytes/metabolism
10.
Behav Brain Res ; 454: 114657, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37683813

ABSTRACT

The hippocampus is a part of the brain's medial temporal lobe that is located under the cortex. It belongs to the limbic system and helps to collect and transfer information from short-term to long-term memory, as well as spatial orientation in each mammalian brain hemisphere. After more than two centuries of research in brain asymmetry, the hippocampus has attracted much attention in the study of brain lateralization. The hippocampus is very important in cognitive disorders, related to seizures and dementia, such as epilepsy and Alzheimer's disease. In addition, the motivation to study the hippocampus has increased significantly due to the asymmetry in the activity of the left and right hippocampi in healthy people, and its disruption during some neurological diseases. After a general review of the hippocampal structure and its importance in related diseases, the asymmetry in the brain with a focus on the hippocampus during the growth and maturation of healthy people, as well as the differences created in patients at the molecular, functional, and physiological levels are discussed. Most previous work indicates that the hippocampus is lateralized in healthy people. Also, lateralization at different levels remarkably changes in patients, and it appears that the most complex cognitive disorder is caused by a new dominant asymmetric system.


Subject(s)
Hippocampus , Limbic System , Animals , Humans , Temporal Lobe , Cerebral Cortex , Brain , Mammals
11.
J Ophthalmic Vis Res ; 18(1): 51-59, 2023.
Article in English | MEDLINE | ID: mdl-36937188

ABSTRACT

Purpose: Adenosine signaling modulates ocular inflammatory processes, and its antagonism mitigates neovascularization in both newborns and preclinical models of ocular neovascularization including age-related macular degeneration (AMD). The adenosine receptor expression patterns have not been well characterized in the human retina and choroid. Methods: Here we examined the expression of adenosine receptor subtypes within the retina and choroid of human donor eyes with and without AMD. Antibodies specifically targeting adenosine receptor subtypes A1, A2A, A2B, and A3 were used to assess their expression patterns. Quantitative real-time PCR analysis was used to confirm gene expression of these receptors within the normal human retina and choroid. Results: We found that all four receptor subtypes were expressed in several layers of the retina, and within the retinal pigment epithelium and choroid. The expression of A1 receptors was more prominent in the inner and outer plexiform layers, where microglia normally reside, and supported by RNA expression in the retina. A2A and A2B showed similar expression patterns with prominent expression in the vasculature and retinal pigment epithelium. No dramatic differences in expression of these receptors were observed in eyes from patients with dry or wet AMD compared to control, with the exception A3 receptors. Eyes with dry AMD lost expression of A3 in the photoreceptor outer segments compared with eyes from control or wet AMD. Conclusion: The ocular presence of adenosine receptors is consistent with their proposed role in modulation of inflammation in both the retina and choroid, and their potential targeting for AMD treatment.

12.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768740

ABSTRACT

Cytochrome P450 (CYP) 1B1 is a heme-containing monooxygenase found mainly in extrahepatic tissues, including the retina. CYP1B1 substrates include exogenous aromatic hydrocarbons, such as dioxins, and endogenous bioactive compounds, including 17ß-estradiol (E2) and arachidonic acid. The endogenous compounds and their metabolites are mediators of various cellular and physiological processes, suggesting that CYP1B1 activity is likely important in maintaining proper cellular and tissue functions. We previously demonstrated that lack of CYP1B1 expression and activity are associated with increased levels of reactive oxygen species and oxidative stress in the retinal vasculature and vascular cells, including retinal endothelial cells (ECs). However, the detailed mechanism(s) of how CYP1B1 activity modulates redox homeostasis remained unknown. We hypothesized that CYP1B1 metabolism of E2 affects bone morphogenic protein 6 (BMP6)-hepcidin-mediated iron homeostasis and lipid peroxidation impacting cellular redox state. Here, we demonstrate retinal EC prepared from Cyp1b1-deficient (Cyp1b1-/-) mice exhibits increased estrogen receptor-α (ERα) activity and expresses higher levels of BMP6. BMP6 is an inducer of the iron-regulatory hormone hepcidin in the endothelium. Increased hepcidin expression in Cyp1b1-/- retinal EC resulted in decreased levels of the iron exporter protein ferroportin and, as a result, increased intracellular iron accumulation. Removal of excess iron or antagonism of ERα in Cyp1b1-/- retinal EC was sufficient to mitigate increased lipid peroxidation and reduce oxidative stress. Suppression of lipid peroxidation and antagonism of ERα also restored ischemia-mediated retinal neovascularization in Cyp1b1-/- mice. Thus, CYP1B1 expression in retinal EC is important in the regulation of intracellular iron levels, with a significant impact on ocular redox homeostasis and oxidative stress through modulation of the ERα/BMP6/hepcidin axis.


Subject(s)
Estrogen Receptor alpha , Hepcidins , Animals , Mice , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Estrogen Receptor alpha/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Oxidative Stress/physiology , Retina/metabolism , Intracellular Space/metabolism
13.
Cells ; 12(2)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672270

ABSTRACT

The integrity of retinal endothelial cell (EC) is essential for establishing and maintaining the retinal blood barrier to ensure proper vision. Vitamin D is a hormone with known protective roles in EC function. The majority of vitamin D action is mediated through the vitamin D receptor (VDR). VDR is a nuclear receptor whose engagement by vitamin D impacts the expression of many genes with important roles in regulation of angiogenesis and inflammation. Although many studies have investigated vitamin D-VDR action in cardiovascular protection and tumor angiogenesis, its impact on retinal EC function and regulation of ocular angiogenesis and inflammation is exceedingly limited. We previously showed calcitriol, the active form of vitamin D, is a potent inhibitor of retinal neovascularization in vivo and retinal EC capillary morphogenesis in vitro. Here, using retinal EC prepared from wild-type (Vdr+/+) and VDR-deficient (Vdr-/-) mice, we show that retinal EC express VDR and its expression is induced by calcitriol. The lack of VDR expression had a significant impact on endothelial cell-cell and cell-matrix interactions. Vdr-/- retinal EC proliferated at a slower rate and were more adherent and less migratory. They also exhibited increased expression levels of inflammatory markers driven in part by sustained activation of STAT1 and NF-κB pathways and were more sensitive to oxidative challenge. These changes were attributed, in part, to down-regulation of endothelial nitric oxide synthetase, enhanced hepcidin expression, and increased intracellular iron levels. Taken together, our results indicate that VDR expression plays a fundamental role in maintaining the proper angiogenic and inflammatory state of retinal EC.


Subject(s)
Calcitriol , Receptors, Calcitriol , Animals , Mice , Receptors, Calcitriol/metabolism , Calcitriol/pharmacology , Endothelial Cells/metabolism , Vitamin D/metabolism , Vitamins , Morphogenesis , Inflammation/pathology
14.
Cells ; 13(1)2023 12 26.
Article in English | MEDLINE | ID: mdl-38201254

ABSTRACT

Age-related macular degeneration (AMD) remains a leading cause of vision loss in elderly patients. Its etiology and progression are, however, deeply intertwined with various cellular and molecular interactions within the retina and choroid. Among the key cellular players least studied are choroidal mast cells, with important roles in immune and allergic responses. Here, we will review what is known regarding the pathophysiology of AMD and expand on the recently proposed intricate roles of choroidal mast cells and their activation in outer retinal degeneration and AMD pathogenesis. We will focus on choroidal mast cell activation, the release of their bioactive mediators, and potential impact on ocular oxidative stress, inflammation, and overall retinal and choroidal health. We propose an important role for thrombospondin-1 (TSP1), a major ocular angioinflammatory factor, in regulation of choroidal mast cell homeostasis and activation in AMD pathogenesis. Drawing from limited studies, this review underscores the need for further comprehensive studies aimed at understanding the precise roles changes in TSP1 levels and choroidal mast cell activity play in pathophysiology of AMD. We will also propose potential therapeutic strategies targeting these regulatory pathways, and highlighting the promise they hold for curbing AMD progression through modulation of mast cell activity. In conclusion, the evolving understanding of the role of choroidal mast cells in AMD pathogenesis will not only offer deeper insights into the underlying mechanisms but will also offer opportunities for development of novel preventive strategies.


Subject(s)
Macular Degeneration , Retinal Degeneration , Aged , Humans , Mast Cells , Choroid , Retina
15.
Cells ; 11(20)2022 10 21.
Article in English | MEDLINE | ID: mdl-36291198

ABSTRACT

The visualization of choroidal vasculature and innate immune cells in the eyes of pigmented mice has been challenging due to the presence of a retinal pigment epithelium (RPE) layer separating the choroid and retina. Here, we established methods for visualizing the choroidal macrophages, mast cells, and vasculature in eyes of albino and pigmented mice using cell type-specific staining. We were able to visualize the choroidal arterial and venous systems. An arterial circle around the optic nerve was found in mice similar to the Zinn-Haller arterial circle that exists in humans and primates. Three different structural patterns of choriocapillaris were observed throughout the whole choroid: honeycomb-like, maze-like, and finger-like patterns. Choroidal mast cells were relatively few but dense around the optic nerve. Mast cell distribution in the middle and periphery was different among strains. Macrophages were found in all layers of the choroid. Thus, utilizing the simple and reliable methods described herein will allow the evaluation of transgenic and preclinical mouse models of ocular diseases that affect the choroid, including age-related macular degeneration (AMD), diabetic choroidopathy, and retinopathy of prematurity. These studies will advance our understanding of the pathophysiology, and molecular and cellular mechanisms that can be targeted therapeutically, in these diseases.


Subject(s)
Choroid , Macular Degeneration , Mice , Humans , Animals , Choroid/blood supply , Retinal Pigment Epithelium , Retina , Immunity, Innate
16.
Cells ; 11(19)2022 09 20.
Article in English | MEDLINE | ID: mdl-36230892

ABSTRACT

Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.


Subject(s)
Hepcidins , Polycyclic Aromatic Hydrocarbons , Acetylcysteine/metabolism , Antioxidants/metabolism , Arachidonic Acid , Cytochrome P-450 Enzyme System/metabolism , Endothelial Cells/metabolism , Estradiol , Estrogens , Heme/metabolism , Hepcidins/metabolism , Homeostasis , Iron , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Trabecular Meshwork/metabolism
17.
Biomolecules ; 12(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36139134

ABSTRACT

Branching morphogenesis is a key developmental process during organogenesis, such that its disruption frequently leads to long-term consequences. The kidney and eye share many etiologies, perhaps, due to similar use of developmental branching morphogenesis and signaling pathways including cell death. Tipping the apoptotic balance towards apoptosis imparts a ureteric bud and retinal vascular branching phenotype similar to one that occurs in papillorenal syndrome. Here, to compare ureteric bud and retinal vascular branching in the context of decreased apoptosis, we investigated the impact of Bim, Bcl-2's rival force. In the metanephros, lack of Bim expression enhanced ureteric bud branching with increases in ureteric bud length, branch points, and branch end points. Unfortunately, enhanced ureteric bud branching also came with increased branching defects and other undesirable consequences. Although we did see increased nephron number and renal mass, we observed glomeruli collapse. Retinal vascular branching in the absence of Bim expression had similarities with the ureteric bud including increased vascular length, branching length, segment length, and branching interval. Thus, our studies emphasize the impact appropriate Bim expression has on the overall length and branching in both the ureteric bud and retinal vasculature.


Subject(s)
Ureter , Endothelium , Epithelium , Morphogenesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Ureter/metabolism
18.
Int J Biol Macromol ; 213: 166-194, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35644315

ABSTRACT

The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.


Subject(s)
Nanoparticles , Polymers , Drug Delivery Systems , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Polymers/chemistry
19.
Arch Oral Biol ; 139: 105434, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35525015

ABSTRACT

OBJECTIVE: This study was performed to evaluate the effect of type 1 diabetes mellitus (T1DM) on the microhardness of tooth enamel and dentine in mice. DESIGN: Seventy male C57BL/6 J mice were used in this study. Thirty-five mice were rendered diabetic by administration of streptozotocin (STZ), and the remaining animals received citrate buffer (normal/non-diabetic). In each group, specimens were divided into 7 subgroups of 5 mice based on the time points 0, 1, 4, 8, 12, 20, and 28 weeks. The microhardness value (MHV) of the second molars' enamel and root dentine were tested with a Vickers microhardness tester. Five specimens from each subgroup were evaluated for dentinal tubular density by scanning electron microscope (SEM) and color dot map analysis to determine the color intensity of strontium (Sr) and magnesium (Mg) by using ImageJ software. RESULTS: The MHV of enamel was significantly reduced in STZ specimens in time points of 12 weeks (STZ: 274.39 ± 15.42, normal: 291.22 ± 15.28), 20 weeks (STZ: 247.28 ± 19.65, normal: 290.68 ± 11.52), and 28 weeks (STZ: 232.87 ± 15.07, normal: 282.76 ± 10.36) (P < 0.05). When comparing the MHV of dentine in subgroups of the normal group, after 20 weeks (169.1 ± 7.5) and 28 weeks (168.6 ± 7.81), the MHV increased significantly (P < 0.05). However, in the STZ group, a significant reduction of MHV was noticed between 28 weeks (131.69 ± 6.2) specimens with other subgroups (P < 0.05). CONCLUSIONS: T1DM negatively affected enamel and dentine microhardness, and enamel was influenced much more negatively and rapidly compared with dentine in diabetic groups.


Subject(s)
Dentin , Diabetes Mellitus, Type 1 , Animals , Dental Enamel , Hardness , Male , Mice , Mice, Inbred C57BL
20.
Cells ; 11(6)2022 03 11.
Article in English | MEDLINE | ID: mdl-35326420

ABSTRACT

Neovascular or wet age-related macular degeneration (nAMD) causes vision loss due to inflammatory and vascular endothelial growth factor (VEGF)-driven neovascularization processes in the choroid. Due to the excess in VEGF levels associated with nAMD, anti-VEGF therapies are utilized for treatment. Unfortunately, not all patients have a sufficient response to such therapies, leaving few if any other treatment options for these patients. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator found in endothelial cells that participates in modulating barrier function, angiogenesis, and inflammation. S1P, through its receptor (S1PR1) in endothelial cells, prevents illegitimate sprouting angiogenesis during vascular development. In the present paper, we show that, in choroidal endothelial cells, S1PR1 is the most abundantly expressed S1P receptor and agonism of S1PR1-prevented choroidal endothelial cell capillary morphogenesis in culture. Given that nAMD pathogenesis draws from enhanced inflammation and angiogenesis as well as a loss of barrier function, we assessed the impact of S1PR agonism on choroidal neovascularization in vivo. Using laser photocoagulation rupture of Bruch's membrane to induce choroidal neovascularization, we show that S1PR non-selective (FTY720) and S1PR1 selective (CYM5442) agonists significantly inhibit choroidal neovascularization in this model. Thus, utilizing S1PR agonists to temper choroidal neovascularization presents an additional novel use for these agonists presently in clinical use for multiple sclerosis as well as other inflammatory diseases.


Subject(s)
Choroidal Neovascularization , Fingolimod Hydrochloride , Choroid/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Endothelial Cells/metabolism , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Inflammation/pathology , Phosphates , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...